I. Multi-planetary systems
 2. Saturn's Rings

3. The collisional N -body code REBOUND

Hanno Rein @ Northwestern, March 2012

Migration in a non-turbulent disc

Planet formation

Migration - Type I

- Low mass planets
- No gap opening in disc
- Migration rate is fast
- Depends strongly on thermodynamics of the disc

Migration - Type II

- Massive planets (typically bigger than Saturn)
- Opens a (clear) gap
- Migration rate is slow
- Follows viscous evolution of the disc

Gap opening criteria

Disc scale height

Migration - Type III

- Massive disc
- Intermediate planet mass
- Tries to open gap
- Very fast, few orbital timescales

Take home message I

planet + disc $=$ migration

Gliese 876

The role model of resonance capture

GJ 876

Lee \& Peale 2002

Take home message II

2 planets + migration $=$ resonance

HD 45364
A closely packed system

HD45364

Pluto
Mercury
Mars
Venus
Earth
Neptune
Uranus
Saturn

Formation scenario for HD45364

- Two migrating planets
- Infinite number of resonances .2 $7: 8$

- Migration speed is crucial
- Resonance width and libration period define critical migration rate

Formation scenario for HD45364

Rein, Papaloizou \& Kley 2010

Formation scenario for HD45364

Massive disc (5 times MMSN)

- Short, rapid Type III migration
- Passage of 2:I resonance
- Capture into $3: 2$ resonance

Large scale-height (0.07)

- Slow Type I migration once in resonance
- Resonance is stable
- Consistent with radiation hydrodynamics

Formation scenario leads to a better 'fit'

Parameter	Unit	Correia et al. (2009)	Simulation F5 b
$M \sin i$	[M ${ }_{\text {Jup }}$]	0.18720 .6579	0.18720 .6579
M_{*}	M_{\odot}]	0.82	0.82
a	AU]	$0.6813 \quad 0.8972$	$0.6804 \quad 0.8994$
e		$0.17 \pm 0.02 \quad 0.097 \pm 0.012$	$0.036 \quad 0.017$
λ	[deg]	$105.8 \pm 1.4 \quad 269.5 \pm 0.6$	352.5153 .9
ϖ^{a}	[deg]	$162.6 \pm 6.3 \quad 7.4 \pm 4.3$	$87.9 \quad 292.2$
$\sqrt{\chi^{2}}$		$\begin{gathered} 2.79 \\ 2453500 \end{gathered}$	$\begin{gathered} 2.76^{b}(3.51) \\ 2453500 \end{gathered}$
Date	[JD]		

Rein, Papaloizou \& Kley 2010

HD I283II

Migration in a turbulent disc

Turbulent disc

- Angular momentum transport
- Magnetorotational instability (MRI)
- Density perturbations interact gravitationally with planets
- Stochastic forces lead to random walk
- Large uncertainties in strength of forces

Animation from Nelson \& Papaloizou 2004 Random forces measured by Laughlin et al. 2004, Nelson 2005, Oischi et al. 2007

Random walk

semi-major axis

time

Rein \& Papaloizou 2009

Correction factors are important

$$
\begin{aligned}
& (\Delta a)^{2}=4 \frac{D t}{n^{2}} \\
& (\Delta \varpi)^{2}=\frac{2.5}{e^{2}} \frac{\gamma D t}{n^{2} a^{2}} \\
& (\Delta e)^{2}=2.5 \frac{\gamma D t}{n^{2} a^{2}}
\end{aligned}
$$

Rein \& Papaloizou 2009, Adams et al 2009, Rein 2010

Multi-planetary systems in mean motion resonance

- Stability of multi-planetary systems depends strongly on diffusion coefficient
- Most planetary systems are stable for entire disc lifetime

Modification of libration patterns

- HDI283II has a very peculiar libration pattern
- Can not be reproduced by convergent migration alone
- Turbulence can explain it
- More multi-planetary systems needed for statistical argument

Take home message III

Migration scenarios can explain the dynamical configuration of many systems in amazing detail

HD200964

The impossible system

Radial velocity curve of HD200964

Pluto

Stability of HD200964

Standard disc migration

Reduced masses

Standard disc migration

In addition to N -body simulations, we ran almost 100 hydrodynamic simulations

Experiments with many different parameters: surface density, slope, scale height, viscosity, planet masses,
boundaries, accretion, ...

Hydrodynamical simulations II

Rein, Payne, Vera \& Ford (20I2 in prep)

Hydrodynamical simulations III

Rein, Payne, Vera \& Ford (20I2 in prep)

Scattering of embryos

Finite number of embryos end up in close in resonances during oligarchic growth phase.

Embryos in a gas disk

Resonance lost quickly

 because of migration and accretion
Scattering and damping

1:1 resonance

3:2 resonance

4:3 resonance

2:1 resonance

Fine tuned planetplanet scattering simulations

Only a very small fraction ends up in 4:3 resonance

Many more end up in I:I resonances, inconsistent with observations

HD200964

Migration

RV signal due to additional planets

Planet-planet scattering

Take home message IV

There is still a lot that we do not understand

Moonlets in Saturn's Rings

Cassini spacecraft

NASA/JPL/Space Science Institute

Propeller structures in A-ring

Porco et al. 2007, Sremcevic et al. 2007, Tiscareno et al. 2006

Observational evidence of non-Keplerian motion

Integrated random walk

Noise

Random walk

Integrated random walk

$$
\begin{aligned}
\lambda_{i} & =\sum_{j<i} a_{j} \\
& =\sum_{j<i} \sum_{k<j} \xi_{k}
\end{aligned}
$$

Work in progress: a statistical measure

Create covariance matrix for the longitude residual assuming a Gaussian random walk

Find basis in which covariance
 matrix is diagonal

Project observation of longitude residuals to this basis

Compare distribution with normal distribution

Random walk

Analytic model

$$
\begin{aligned}
\Delta a & =\sqrt{4 \frac{D t}{n^{2}}} \\
\Delta e & =\sqrt{2.5 \frac{\gamma D t}{n^{2} a^{2}}}
\end{aligned}
$$

Describing evolution in a statistical manner Partly based on Rein \& Papaloizou 2009

N -body simulations
Measuring random forces or integrating moonlet directly Crida et al 2010, Rein \& Papaloizou 2010

Random walk

REBOUND code, Rein \& Papaloizou 2010, Crida et al 2010

Take home message V

Saturn's rings
 =

small scale version of a proto-planetary disc

REBOUND

A new open source collisional N-body code

REBOUND

- Multi-purpose N-body code
- Optimized for collisional dynamics
- Code description paper recently accepted by A\&A
- Written in C, open source
- Freely available at http://github.com/hannorein/rebound

REBOUND modules

Geometry

- Open boundary conditions
- Periodic boundary conditions
- Shearing sheet / Hill's approximation

Integrators

- Leap frog
- Symplectic Epicycle integrator (SEI)
-Wisdom-Holman mapping (WH)

Gravity

- Direct summation, $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- BH-Tree code, $\mathrm{O}(\mathrm{N} \log (\mathrm{N}))$
- FFT method, $\mathrm{O}(\mathrm{N} \log (\mathrm{N}))$

Collision detection

- Direct nearest neighbor search, $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- BH-Tree code, $\mathrm{O}(\mathrm{N} \log (\mathrm{N}))$
- Plane sweep algorithm, $\mathrm{O}(\mathrm{N})$ or $\mathrm{O}\left(\mathrm{N}^{2}\right)$

REBOUND scalings using a tree

strong

weak

REBOUND

DEMO

Take home message VII

Download REBOUND

Conclusions

Conclusions

Resonances and multi-planetary systems

Multi-planetary system provide insight in otherwise unobservable formation phase
GJ876 formed in the presence of a disc and dissipative forces
HDI283II formed in a turbulent disc
HD45364 formed in a massive disc
HD200964 did not form at all

Moonlets in Saturn's rings

Small scale version of the proto-planetary disc
Random walk can be directly observed
Caused by collisions and gravitational wakes

REBOUND

N -body code, optimized for collisional dynamics, uses symplectic integrators
Open source, freely available, modular and easy to use
http://github.com/hannorein/rebound

