

I. Multi-planetary systems 2. Saturn's Rings 3. The collisional N-body code REBOUND

Hanno Rein @ Northwestern, March 2012

Migration in a non-turbulent disc

Planet formation

Image credit: NASA/JPL-Caltech

Migration - Type I

- Low mass planets
- No gap opening in disc
- Migration rate is fast
- Depends strongly on thermodynamics of the disc

Migration - Type II

- Massive planets (typically bigger than Saturn)
- Opens a (clear) gap
- Migration rate is slow
- Follows viscous evolution of the disc

Crida et al 2006

Migration - Type III

- Massive disc
- Intermediate planet mass
- Tries to open gap
- Very fast, few orbital timescales

planet + disc = migration

Gliese 876 The role model of resonance capture

GJ 876

Lee & Peale 2002

2 planets + migration = resonance

HD 45364 A closely packed system

HD45364

Correia et al 2009, Visual Exoplanet Catalogue

Formation scenario for HD45364

- Two migrating planets
- Infinite number of resonances
- Migration speed is crucial
- Resonance width and libration period define critical migration rate

Formation scenario for HD45364

Formation scenario for HD45364

Massive disc (5 times MMSN)

- Short, rapid Type III migration
- Passage of 2:1 resonance
- Capture into 3:2 resonance

Large scale-height (0.07)

- Slow Type I migration once in resonance
- Resonance is stable
- Consistent with radiation hydrodynamics

Formation scenario leads to a better 'fit'

HD 128311 Migration in a turbulent disc

Turbulent disc

- Angular momentum transport
- Magnetorotational instability (MRI)
- Density perturbations interact gravitationally with planets
- Stochastic forces lead to random walk
- Large uncertainties in strength of forces

Animation from Nelson & Papaloizou 2004 Random forces measured by Laughlin et al. 2004, Nelson 2005, Oischi et al. 2007

Random walk

Rein & Papaloizou 2009

Correction factors are important

$$(\Delta a)^2 = 4\frac{Dt}{n^2}$$

$$(\Delta \varpi)^2 = \frac{2.5}{e^2}\frac{\gamma Dt}{n^2 a^2}$$

$$(\Delta e)^2 = 2.5\frac{\gamma Dt}{n^2 a^2}$$

Rein & Papaloizou 2009, Adams et al 2009, Rein 2010

time [years]

.

Multi-planetary systems in mean motion resonance

- Stability of multi-planetary systems depends strongly on diffusion coefficient
- Most planetary systems are stable for entire disc lifetime

Rein & Papaloizou 2009

Modification of libration patterns

- HD128311 has a very peculiar libration pattern
- Can not be reproduced by convergent migration alone
- Turbulence can explain it
- More multi-planetary systems needed for statistical argument

Migration scenarios can explain the dynamical configuration of many systems in amazing detail

HD200964 The impossible system

Radial velocity curve of HD200964

Plot by Matthew Payne

Stability of HD200964

Standard disc migration

Reduced masses

Standard disc migration

In addition to N-body simulations, we ran almost 100 hydrodynamic simulations

Experiments with many different parameters: surface density, slope, scale height, viscosity, planet masses, boundaries, accretion, ...

Hydrodynamical simulations II

Rein, Payne, Vera & Ford (2012 in prep)

Hydrodynamical simulations III

Rein, Payne, Vera & Ford (2012 in prep)

Scattering of embryos

Set A_{t=10}7: 0.55 < a < 1.75

Finite number of embryos end up in close in resonances during oligarchic growth phase.

Rein, Payne, Vera & Ford (2012 in prep)

Embryos in a gas disk

Initially in resonance

Resonance lost quickly because of migration and accretion

Scattering and damping

3:2 resonance 10¹ 10⁰ \swarrow 10⁻¹ 10⁻² 10³ 10⁴ 10⁵ 10⁶ τ_{a} [yrs]

Fine tuned planetplanet scattering simulations

Only a very small fraction ends up in 4:3 resonance

Many more end up in I:I resonances, inconsistent with observations

HD200964

There is still a lot that we do not understand

Moonlets in Saturn's Rings

Cassini spacecraft

NASA/JPL/Space Science Institute

Propeller structures in A-ring

Porco et al. 2007, Sremcevic et al. 2007, Tiscareno et al. 2006

Observational evidence of non-Keplerian motion

Tiscareno et al. 2010

Integrated random walk

Noise

Random walk

Integrated random walk

$$a_i = \sum_{j < i} \xi_j$$

$$\lambda_i = \sum_{j < i} a_j$$
$$= \sum_{j < i} \sum_{k < j} \xi_k$$

Work in progress: a statistical measure

Create covariance matrix for the longitude residual assuming a Gaussian random walk

Find basis in which covariance matrix is diagonal

Project observation of longitude residuals to this basis

Compare distribution with normal distribution

Random walk

Analytic model

Describing evolution in a statistical manner Partly based on Rein & Papaloizou 2009

$$\Delta a = \sqrt{4\frac{Dt}{n^2}}$$
$$\Delta e = \sqrt{2.5\frac{\gamma Dt}{n^2 a^2}}$$

N-body simulations

Measuring random forces or integrating moonlet directly Crida et al 2010, Rein & Papaloizou 2010

Rein & Papaloizou 2010, Crida et al 2010

Random walk

REBOUND code, Rein & Papaloizou 2010, Crida et al 2010

Saturn's rings = small scale version of a proto-planetary disc

REBOUND

A new open source collisional N-body code

REBOUND

- Multi-purpose N-body code
- Optimized for collisional dynamics
- Code description paper recently accepted by A&A
- Written in C, open source
- Freely available at http://github.com/hannorein/rebound

REBOUND modules

Geometry

- Open boundary conditions
- Periodic boundary conditions
- Shearing sheet / Hill's approximation

Integrators

- Leap frog
- Symplectic Epicycle integrator (SEI)
- Wisdom-Holman mapping (WH)

Gravity

- Direct summation, $O(N^2)$
- BH-Tree code, O(N log(N))
- FFT method, O(N log(N))

Collision detection

- Direct nearest neighbor search, $O(N^2)$
- BH-Tree code, O(N log(N))
- Plane sweep algorithm, O(N) or $O(N^2)$

REBOUND scalings using a tree

DEMO

Download REBOUND

Conclusions

Resonances and multi-planetary systems

Multi-planetary system provide insight in otherwise unobservable formation phase

GJ876	formed in the presence of a disc and dissipative forces
HD128311	formed in a turbulent disc
HD45364	formed in a massive disc
HD200964	did not form at all

Moonlets in Saturn's rings

Small scale version of the proto-planetary disc Random walk can be directly observed Caused by collisions and gravitational wakes

REBOUND

N-body code, optimized for collisional dynamics, uses symplectic integrators Open source, freely available, modular and easy to use http://github.com/hannorein/rebound